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Abstract. Accurate and automatic analysis of breast MRI plays an
important role in early diagnosis and successful treatment planning for
breast cancer. Due to the heterogeneity nature, accurate diagnosis of
tumors remains a challenging task. In this paper, we propose to iden-
tify breast tumor in MRI by Cosine Margin Sigmoid Loss (CMSL) with
deep learning (DL) and localize possible cancer lesion by COrrelation
Attention Map (COAM) based on the learned features. The CMSL em-
beds tumor features onto a hyper-sphere and imposes a decision margin
through cosine constraints. In this way, the DL model could learn more
separable inter-class features and more compact intra-class features in
the angular space. Furthermore, we utilize the correlations among feature
vectors to generate attention maps that could accurately localize cancer
candidates with only image-level label. We build the largest breast can-
cer dataset involving 10,290 DCE-MRI scan volumes for developing and
evaluating the proposed methods. The model driven by CMSL achieved
classification accuracy of 0.855 and AUC of 0.902 on the testing set, with
sensitivity and specificity of 0.857 and 0.852, respectively, outperform-
ing other competitive methods overall. In addition, the proposed COAM
accomplished more accurate localization of the cancer center compared
with other state-of-the-art weakly supervised localization method.

1 Introduction

Breast cancer is the most common malignancy affecting women worldwide [1].
Early diagnosis of breast cancer is essential for successful treatment planning,
where Magnetic Resonance Imaging (MRI) plays a vital role for screening high-
risk populations [2]. Clinically, radiologists use the Breast Imaging-Reporting
and Data System (BI-RADS) to categorize breast lesions into different levels ac-
cording to their phenotypic characteristics presented in MRI images, indicating
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different degrees of cancer risk. However, such assessment suffers from inter-
observer variance and often subjectively relies on the radiologists’ experience.
Moreover, due to the heterogeneity nature, tumors of the same pathological
result (malignant or benign) could have diverse patterns and hence result in dif-
ferent BI-RADS assessments. In other words, tumors could possess ambiguous
inter-class difference and large intra-class variance, which poses a serious chal-
lenge to accurate diagnosis of breast cancer.

Generally, there are two major tasks regarding to breast MRI tumor analy-
sis: identification of tumors and localization of cancer candidates. Recently, Deep
Learning (DL) based approaches have demonstrated great potential in assisting
diagnosis of breast cancer in an automatic and fast manner. Previous studies
manually annotated tumors and deliberately extracted the corresponding slices
or patches for classification [3,4]. Such methods depended on careful annotations
both for training and testing and could not easily be adopted to clinical appli-
cation. On the other hand, Guy et al. [5] proposed to first automatically localize
the lesions and then classify cancer candidates at the second stage. Although
the inference in the testing stage thereby was free of lesion delineation, these
works still required annotations for model training. To get rid of manual extrac-
tion for region of interest (RoI), Gabriel et al. [6] proposed to meta-learn the
breast MRI cancer classification problem with only image-level labels. However,
all the mentioned studies were limited to small size datasets and consequently
lack of generalization validation. More importantly, the relatively low precision
or specificity reported in these works implied that the aforementioned problem
of inter-class difference and intra-class variance has not been addressed yet.

To this end, we propose a Cosine-Margin Sigmoid Loss (CMSL) to tackle the
heterogeneity problem for breast tumor classification and COrrelation Attention
Map (COAM) for precise cancer candidates localization, both with image-level
labels only. The CMSL is extended from the cosine loss originally designed for
face verification [7]. It embeds the deep feature vectors onto a hyper-sphere and
learns a decision margin between classes in the angular feature space. As a re-
sult, the learned features possess more compact intra-class variance and more
separable intra-class difference. In addition, we observe a RoI shifting problem
of localizing cancer by class activation map [8]. Therefore, we propose a novel
weakly supervised method, i.e., COAM, to localize cancer candidates more ac-
curately by leveraging deep feature correlations based on the Gram matrix. Fur-
thermore, we build the largest breast DCE-MRI dataset including 10,290 volume
scans from 1715 subjects to develop and evaluate our methods.

2 Methods

Our framework of breast MRI tumor analysis consists of two parts as illustrated
in Fig. 1. One is tumor classification by deep angular embedding driven DL
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Fig. 1. The framework of breast MRI cancer analysis. A 3D ResNet is first trained
with CMSL by embedding the deep features onto hyper-sphere. In the testing stage,
the deep features are used to construct Gram matrix to obtain correlation attention
map.

network. The other is weakly supervised cancer candidates localization with
feature correlation attention map.

2.1 Cosine Margin Sigmoid Loss for Tumor Classification

The phenotype of tumors has ambiguous inter-class difference and large intra-
class variance. Accordingly, the features learned by the DL model could inherit
these characteristics. To address this issue, we start by revisiting the traditional
sigmoid loss for binary classification problem. Given the input feature vector x
of the last fully connected (FC) layer and its corresponding label y, the binary
sigmoid loss is as follows:

L(w;x) =− y · log(p(y | x))− (1− y) · log(1− p(y | x)) (1)

=− y · log(
1

1 + e−wT x
)− (1− y) · log(1− 1

1 + e−wT x
) (2)

where w is the weight parameter of the FC layer, and p(y | x) represents the
probability of x being classified to y. To distinguish different classes, the DL
model is expected to give different predictions by adjusting the value of wTx.
Notice that wTx = ‖w‖‖x‖cosθ, where θ is the angle between feature vector
x and weight vector w, and ‖ · ‖ is the L2 norm operation. Generally, the DL
model would implicitly alter ‖w‖ and ‖x‖ in the Euclidean space and cosθ in
the angular space. However, the aforementioned heterogeneity issue could lead
to ambiguous features that are quite hard to discriminate. To this end, con-
straints on feature distances are considered to regulate the DL model for more
separable inter-class features and more compact intra-class features [7]. Since
Euclidean distance is not bounded and hence difficult to constrain, we prefer to
add regularization on the angular distance which is bounded by −1 ≤ cosθ ≤ 1.
Specifically, we eliminate the influence of the norms ‖x‖ and ‖w‖ by modifying
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Fig. 2. The illustration of NSL with s = 1, NSL with s = 20 and CMSL with s = 20
and m = 0.35. First row is the geometric interpretation of feature projection on a 2D
sphere. Dashed arrows represent the decision boundaries. Second row is the plot of
corresponding sigmoid functions. Dashed curves represent the values out of range.

the computation of p(y | x) to:

p(y | x) =
1

1 + e−s
wT x

‖w‖‖x‖

=
1

1 + e−s·cosθ
(3)

where s is a hyper-parameter adjusting the slope of the sigmoid function and
controlling the back propagated gradient values. If s is too small, the loss cannot
converge to 0 because the sigmoid function is not able to reach its saturation area,
given that −1 ≤ cosθ ≤ 1. On the contrast, if s is set to a large value, the sigmoid
function could easily reach the saturation area and result in small gradients,
which prevents the network from learning sufficient knowledge. Following [7], we
refer to the loss with modified p in Eq.(3) as Normalized Sigmoid Loss (NSL),
which focuses on separating features in the angular space with decision boundary
cosθ = 0 for both classes. Geometrically, we embed the feature vector and the
weight vector onto a hyper-sphere whose radius is tuned by s. However, the
ambiguous features can still distribute near this boundary. Therefore we add an
explicit guidance to NSL as follows:

L(w;x) = −y · log(
1

1 + e−s·(cosθ−I(y)·m)
)− (1− y) · log(1− 1

1 + e−s·(cosθ−I(y)·m)
)

(4)

where I(·) is an indicator function. I(y) = 1 if y = 1 and I(y) = −1 otherwise.
m is a hyper-parameter that changes the decision boundaries for separating
two classes (0 and 1 for benign and malignant) to: B0 : cosθ + m < 0 and
B1 : cosθ − m > 0. Hence a decision margin is imposed by m in the angular
space to make the learned inter-class features more separable. Consequently, the
distribution space of features shrinks, which eventually leads to more compact
intra-class features. Fig. 2 shows a comparison among different sigmoid functions
and the corresponding geometric illustrations.
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2.2 Feature Correlation Attention for Cancer Localization

Based on the well trained network, localization of cancer candidates can provide
more evidences for clinical reference. Therefore, our secondary goal is to localize
possible cancers out of other lesion mimics. It is natural for DL studies to use
Class Activation Map (CAM) [8] for obtaining the Region of Interest (RoI) when
only image-level label is available. However, it can not be well generalized to our
case due to an observed RoI shifting problem. With the CNN going deeper, the
reception fields of neurons become larger, hence neighbors of the tumor feature
also capture views over the tumor patch in the image. Since the feature vectors
corresponding to different classes could be ambiguous, the classifier layer would
possibly tend to find discriminative patterns in the neighbors. Consequently, the
corresponding RoI generated by CAM would shift from the desired target.

To tackle this problem, we further figure out two insights of our task. First,
the feature vectors of the same semantic (malignant or normal) ought to have
high correlations with each other. Second, through a series of rectified linear
units, the network would implicitly learns large activation values for features re-
lated to suspicious cancer patch (with label “1”), and small activation values for
features related to normal patch (with label “0”). Based on these two intuitions,
we leverage the Gram matrix [9] to find the RoI. Given the deep feature map
X ∈ RH×W×S×C from the last activation layer, where H,W,S and C are the
height, width, number of slices and number of channels, respectively, we first re-
shape X to X ′ ∈ RN×C , where N = H×W ×S. Then we compute an attention
vector M ∈ RN as follows:

Mi =

N∑
j=1

Gi,j =

N∑
j=1

C∑
k=1

X ′i,kX
′
j,k (5)

where G ∈ RN×N is the Gram matrix over the set of deep feature vectors in
X ′. Each entry Gi,j is the inner product of X ′i and X ′j , representing the corre-
lation between i-th and j-th vector. Because our network is trained for binary
classification, it enables the gap between large and small activation values of
feature vector related to suspicious cancer and normal patch. Correspondingly,
the correlation value would also be relatively large or small according to the
activation values of the features. Inspired by [10], each column Gi can be in-
terpreted as a sub-attention map implying the network’s attention of the class
that i-th vector belongs to. Thus the above operation is equal to element-wise
summation over all sub-attention maps Gi. Moreover, since G is symmetric, the
element-wise summation is also equivalent to summing over Gi to be the value of
Mi. Essentially,

∑N
j=1Gi,j indicates the importance of i-th feature determined

by the sub-attention of the feature map at its i-th position. At last, by sim-
ply reshape M to H ×W × S we are able to obtain an attention map purely
based on the deep feature correlations. We refer to this method as COrrelation
Attention Map (COAM). It is worth mentioning that COAM is related to the
self-attention mechanism [10] and the stationary feature space representation [9].
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However, it differs from these works because the Gram matrix is not involved at
any optimization stage and directly used for attention map generation.

3 Experiments and Results

3.1 Implementation Details

Dataset We built the largest breast tumor Dynamic Contrast Enhanced (DCE)
MRI dataset involving 10,290 scans from 1715 subjects, with 1137 cases contain-
ing malignant tumors and 578 cases containing benign tumors. All of the scans
were conducted with a 1.5-T Siemens system. We collected 6 DCE-MRI sub-
traction scans and 1 non-fat suppressed T1 scan from each subject. BI-RADS
categories were assessed by 3 radiologists. Pathological labels was given by biopsy
or surgery diagnosis. The data were randomly divided into training, validation
and testing sets with 1204, 165 and 346 subjects, respectively.

Preprocessing Frangi’s approach[11] was first applied on the slices of each
non-fat suppressed T1 scan to detect evident edges. Next, thresholding, small
connected component removal and hole filling were sequentially employed to ob-
tain coarse breast region masks. Afterwards, the 2D masks were stacked into
volumes, followed by Gaussian smooth. We used the 3D masks to segment the
subtractions. Note that the DCE-MRI and non-fat suppressed scans were origi-
nally registered in the scanning machine. Finally we clipped and normalized the
intensity values, concatenated 6 subtractions, and cropped or padded the data
to a fixed size of 340× 220× 128 as the model inputs.

Training Strategy We used 3D ResNet34 [12] as the base model and replaced
the global average pooling layer and FC layer with an 1 × 1 × 1 convolutional
layer appended with a pooling layer. The hyper-parameter s and m were set to
20 and 0.35, respectively, similar to [7]. The learning rate was initially set to
10−4 and decreased 10 times when training error stagnated. The base model is
trained until convergence and then employed to initialize all other methods.

3.2 Evaluation and Comparison

Tumor Classification We conducted comparison among several deep learning
methods: (1)2D MIL: a multi instance method aggregating features from 2D
slices by 2D ResNet34 [13]; (2)3D ResNet : a 3D implementation of ResNet34;

Table 1. Comparison of different methods on cancer classification.

Method Accuracy Sensitivity Specificity F1 AUC

2D MIL [13] 0.789 0.870 0.626 0.846 0.842
3D ResNet [12] 0.821 0.840 0.783 0.862 0.880

3D Sparse MIL [14] 0.832 0.857 0.783 0.872 0.885
3D DK-MT [15] 0.824 0.896 0.643 0.864 0.883
3D ResNet+NSL 0.821 0.840 0.783 0.862 0.874

3D ResNet+CMSL (ours) 0.855 0.857 0.852 0.888 0.902
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Fig. 3. Comparison Between CAM and COAM. We select typical slices from different
subjects for a qualitative demonstration. First row: DCE-MRI subtraction slice; second
row: visualization of CAM; third row: visualization of COAM. Cancer lesions are circles
by red. Best viewed in color.

(3)3D Sparse MIL: a sparse label assign method [14]; (4)3D DK-MT : a domain
knowledge driven multi-task learning network [15]; (5)3D ResNet+NSL: Nor-
malized sigmoid loss based on (2); (6)3D ResNet+CMSL: our proposed CMSL
based on (2). We computed the accuracy, specificity, sensitivity, F1 score and
AUC as the evaluation metrics. Experimental results are reported in Table 1.

Compared with 2D method, 3D approaches achieved better results by uti-
lizing more spatial information. Both 3D Sparse MIL and 3D DK-MT adopted
additional assumption or knowledge, leading to better performance than vanilla
3D ResNet. Noticeably, 3D DK-MT showed poor specificity, which is possibly
due to imbalanced auxiliary knowledge (more BI-RADS 4 and 5 than 3) that
dominated the learning process. For deep angular embedding based methods like
3D ResNet+NSL, simply taking the features into angular space without margin
constraint caused certain performance decay. It implied that the network cannot
learn sufficient knowledge if s is set to a large value. Moreover, our proposed
3D ResNet+CMSL method significantly improved the results. The underlying
reason is that it could learn more discriminative patterns by imposing cosine
margin. Our method achieved the highest specificity with over 7.9% better than
all other methods and kept a comparable sensitivity at the mean time. It ex-
ceeded all other methods with over 2% in AUC, over 3% in accuracy and over
1.5% in F1 score, proving that addressing the inter- and intra-class problem can
improve performance of breast tumor classification.

Cancer Localization To evaluate the performance of COAM, we invited the
radiologists to manually annotate 85 samples that were classified as malignant
by our model. We compared our method with CAM by computing the Euclidean
distance between center position of the annotation and the voxel position with
highest value in the attention map. Then the distance is multiplied by the voxel
spacing, i.e., 1.1 mm, as the final measurement. The criteria is reported in the
form of mean±std, where mean and stdv represent the mean value and standard
deviation of the center distances over 85 samples, respectively. Compared to the
distance of 39.84±8.82mm by CAM, COAM showed a significant advantage with
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18.26±13.65 mm only. Fig. 3 showed the qualitative comparison with these two
methods.

4 Conclusion

In this paper, we propose the cosine margin sigmoid loss for breast tumor classi-
fication and correlation attention map for weakly supervised cancer candidates
localization based on MRI scans. First, we use CMSL driven deep network to
learn more separable inter-class features and more compact intra-class features
which effectively tackle the heterogeneity problem of tumors. In addition, the
proposed COAM leverages correlations among deep features to localize region
of interests in a weakly supervised manner. Extensive experiments on our large-
scale dataset demonstrates the efficacy of our methods which outperform other
state-of-the-art approaches significantly on both tasks. Our methods are general
and can be extended to many other fields.

References

1. DeSantis, C. E., et al.: Breast cancer statistics, 2017, racial disparity in mortality
by state. In: CA: a cancer journal for clinicians 67(6). pp439-448. (2017).

2. Kuhl, C., et al.: Prospective multicenter cohort study to refine management rec-
ommendations for women at elevated familial risk of breast cancer: the EVA trial.
J Clin Oncol 28.9 (2010): 1450-1457.

3. Zheng, H., et al.: Small Lesion Classification in Dynamic Contrast Enhancement
MRI for Breast Cancer Early Detection. International Conference on Medical Im-
age Computing and Computer-Assisted Intervention. Springer, Cham. (2018).

4. Amit, G., et al.: Classification of breast MRI lesions using small-size training sets:
comparison of deep learning approaches. In: Medical Imaging 2017: Computer-
Aided Diagnosis. Vol. 10134. International Society for Optics and Photonics, 2017.

5. Amit, G., et al.: Hybrid mass detection in breast MRI combining unsupervised
saliency analysis and deep learning. International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, Cham. pp. 594-602.
(2017).

6. Maicas, G., et al.: Training medical image analysis systems like radiologists. Inter-
national Conference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, Cham. (2018).

7. Wang, H., et al.: Cosface: Large margin cosine loss for deep face recognition. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(2018).

8. Zhou, B., et al.: Learning deep features for scene recognition using places database.
Advances in neural information processing systems. pp. 487-495. (2014).

9. Gatys, L., Ecker, A. S., & Bethge, M.: Texture synthesis using convolutional neural
networks. Advances in neural information processing systems (pp. 262-270). (2015).

10. Fu, J., et al.: Dual attention network for scene segmentation. arXiv preprint
arXiv:1809.02983 (2018).

11. Frangi, A. F., et al.: Multiscale vessel enhancement filtering. International confer-
ence on medical image computing and computer-assisted intervention. pp. 130-13.
Springer, Berlin, Heidelberg. (1998).

http://arxiv.org/abs/1809.02983


Breast MRI Cancer Analysis 9

12. He, K., et al: Deep residual learning for image recognition. Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 770-778. (2016).

13. Wu, J., et al.: Deep multiple instance learning for image classification and auto-
annotation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2015).

14. Zhu, W., et al.: Deep multi-instance networks with sparse label assignment
for whole mammogram classification. International Conference on Medical Im-
age Computing and Computer-Assisted Intervention. Springer, Cham, pp. 603-
611.(2017).

15. LIU, J., et al.: Integrate Domain Knowledge in Training CNN for Ultrasonography
Breast Cancer Diagnosis. International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 868-875. Springer, Cham. (2018).


	Deep Angular Embedding and Feature Correlation Attention for Breast MRI Cancer Analysis

